# Statement(s)
> [!NOTE] Statement 1 (....)
> Let $G$ be a [[Groups|group]] and $H$ a [[Subgroup|subgroup]]. Let $g\in G.$ Then there exists a [[Bijection|bijection]] between the [[Coset|left coset]] of $H$ modulo $g,$ $gH$ and $H.$
# Proof(s)
**Proof:** Define $\begin{align}
\phi: H\to gH \\
h \mapsto gh
\end{align}$Let $h_{1},h_{2} \in H,$ such that $\phi(h_{1})=\phi(h_{2}).$ Then $gh_{1}=gh_{2}.$ Premultiplying both sides by $g^{-1}$ gives $h_{1} = h_{2}$ and so $\phi$ is injective.
Let $x\in gH.$ Then by definition of $gH,$ $x=gh$ for some $h\in H$ and so $\phi$ is surjective. $\blacksquare$
**Proof:** Define $\begin{align}
\phi: H\to gH \\
h \mapsto gh
\end{align}$
and Define $\begin{align}
\theta: gH\to H \\
x \mapsto g^{-1} x
\end{align}$
Then $\phi$ and $\theta$ are inverses of each other. $\blacksquare$
# Application(s)
**Consequences**:
**Examples**:
# Bibliography