Definitions
1. 2-d [[Manifolds|manifold]]. A subset $S \subset \mathbb{R}^{3}$ is called a surface if, $\forall \underline{p} \in S,$ there exists an open set $U\subseteq \mathbb{R}^{2},$ and open set $V\subseteq \mathbb{R}^{3}$ containing such that $U$ is *homeomorphic* to $S \cap V.$
2. [[Parametrized Surface]].
3. [[Algebraic Surface]].
# Related
- [[Curve]]