# Statements
###### For real-valued functions on sets of real numbers
Let $\left(f_n\right):\Omega \subseteq \mathbb{R}\to \mathbb{R}$ be a sequence of [[Continuous Real Function|continuous real functions]] that [[Convergence|converge]] to $f: \Omega \rightarrow R$ with respect to the [[Supremum norm|supremum norm]]. Then $f$ is also continuous.
###### For real-valued functions on metric spaces
Let $(X,d)$ be a non-empty [[Metrics|metric space]] and let $C(X)=\{ f:X\to \mathbb{R} \mid f \text{ is continuous} \}$, denote the set of continuous real-valued on $X$. Then for any sequence $(f_{n})$ in $(C(X), \lVert \cdot \rVert)_{\infty }$ such that $f_{n}\to f$, we have that $f$ is continuous, where $\lVert \cdot \rVert_{\infty}$ denotes the supremum norm.
# Proof
###### Proof for real-valued functions on metric spaces
By the definition of convergence, for any $\varepsilon>0,$ there exists some positive integer $N$ such that $\lvert \lvert f_{N} -f\rvert \rvert_{\infty}< \varepsilon/3.$
Fix $x\in X$. Since $f_N$ is continuous at $x$, there exists $\delta>0$ such that for all $y\in X$, $d(x,y)< \delta$ implies that $\left|f_N(x)-f_N\left(y\right)\right|<\varepsilon / 3.$from which it follows, by the triangle inequality, that $\begin{aligned}
\left|f(x)-f\left(y\right)\right|
& \leq\left|f(x)-f_N(x)\right|+\left|f_N(x)-f_N\left(y\right)\right|+\left|f_N\left(y\right)-f\left(y\right)\right| \\
& \leq \lvert \lvert f_{N}-f \rvert \rvert_{\infty} + |f_{N}(x)-f_{N}(y)| +\lvert \lvert f_{N}-f \rvert \rvert_{\infty} \\
&< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} +\frac{\varepsilon}{3}
= \varepsilon,
\end{aligned}$which completes the proof.