# Statement(s)
> [!NOTE] Statement 1 (Uniformly Continuous Real Function is Bounded by some Linear Function)
> Let $f:\mathbb{R}\to \mathbb{R}$ be [[Uniformly Continuous Real Function|uniformly continuous]]. Then there exists $a,b>0$ such that for all $x\in \mathbb{R},$ $|f(x)|<a|x|+b.$
# Proof(s)
**Proof of statement 1:**
By definition of uniform continuity, we can choose $\delta>0$ such that for all $x,y\in \mathbb{R},$ $|x-y|<\delta \implies |f(x)-f(y)|<1.$
For all $x\neq0,$ we know $|x|\in(n\delta,(n+1)\delta\,]$ for some $n\in \mathbb{N}.$ Applying the triangle inequality, $\begin{align}
|f(x)|&=|f(x)-f(n\delta)+f(n\delta)-f((n-1)\delta)+f((n-1)\delta)-\dots+f(\delta)-f(0)+f(0)| \\
&\leq n+1+|f(0)| \\
&\leq \frac{1}{\delta} |x|+|f(0)|+1
\end{align}$since $n\delta<|x|.$ $\blacksquare$
# Application(s)
**Consequences**:
**Examples**:
# Bibliography