> [!NOTE] Definition (Upper Riemann Integral)
> Let $[a,b]$ be a [[Closed Real Interval|closed real interval]].
>
> Let $f:[a,b]\to \mathbb{R}$ be a [[Bounded Real Function|bounded]] [[Real Function|real function]].
>
>The *upper Riemann Integral* of $f$ over $[a,b]$ is given by $\overline{\int} f = \inf_{P}U(f,P)$where $\inf_{P}U(f,P)$ is the [[Infimum of Set of Real Numbers|infimum]] of the set of [[Upper Darboux Sum|upper Riemann sums]] of $f$ with respect to all [[Finite Partition of Closed Real Interval|finite partitions]] of $[a,b].$
>