Operations on [[Vectors]] ([[Vector spaces]]).
# Addition & Subtraction
Suppose $\underline{v} = \begin{pmatrix}
a_{1} \\ \vdots \\ a_{n}
\end{pmatrix}, \quad \underline{w} = \begin{pmatrix}
b_{1} \\ \vdots \\ b_{n}
\end{pmatrix} \quad \in \mathbb{F}^{n}$
> [!info] Remark
> It is usual to think of this addition of vectors as completing a parallelogram with a vertex at the origin and v and w as two adjacent sides there.
>
# Scalar Multiplication
> [!Remark]
> $\{ \lambda \underline{v} \mid \lambda \in \mathbb{R} \}$ is the line through $\underline{v}$.
>
# Properties
> [!Lemma]
> Let $\underline{v}, \underline{w}$ be vectors and $\lambda, \mu$ be scalars. Then
> 1. $\underline{v} + \underline{w} = \underline{w}+ \underline{v}$, [[Commutativity]] of vector addition
> 2. $\lambda(\underline{v} + \underline{w}) = \lambda \underline{v} + \lambda \underline{w}$, scalar multiplication is [[Distributivity|distributive]] over vector addition.
> 3. $\lambda(\mu \underline{v}) = (\lambda \mu) \underline{v}$, [[Associativity]] of scalar multiplication
> 4. $0 \underline{v}= \underline{0}$, $1\underline{v} = \underline{v}$, $(-1)\underline{v} = -\underline{v}$, $\underline{v}+\underline{v}=2\underline{v}$ and $\underline{v} - \underline{v} = \underline{v} + (-\underline{v}) = \underline{0}$.
> [!Proof]
> Consider each component of a vector separately.
> 1. By definition, the $i$-th component of $\underline{v} +\underline{w}=a_{i}+b_{i}$
> $i$-th component of $\underline{w}+\underline{v}=b_{i}+a_{i}=a_{i}+b_{i}$
> so $\underline{v}+\underline{w}=\underline{w}+\underline{v}$.
> 2. $i$-th component of $\lambda(\underline{v}+\underline{w})=\lambda(a_{i}+b_{i})=\lambda a_{i}+\lambda b_{i}$ which is the $i$-th component of $\lambda\underline{v}+\lambda \underline{w}$ so $(2)$ holds.
> 3. etc.