# Definition(s)
> [!NOTE] Definition 1 (Sphere in $\mathbb{R}^n$)
> Let $n$ be a natural number. The $n$-dimensional sphere of radius $r\geq 0$ is given by $S^{n}_{r} = \{ \mathbf{x} \in \mathbb{R}^{n+1}: \Vert \mathbf{x} \Vert = r \}$where $\Vert \cdot \Vert$ denotes the [[Euclidean Norm|standard Euclidean norm]].
**Notation**: The unit sphere is denoted $S^n:=S_{1}^n.$
> [!Example] Example ($S^n$ for $n=0,1,2$)
> $S^{0}= \{ -1,1 \}$
> $S^{1}$ is the unit circle.
> $S^2$ is the unit sphere.
# Properties(s)
# Application(s)
**More examples**:
# Bibliography